
IET Communications

Special Section: UAV-Enabled Mobile Edge Computing

Computing in the air: An open airborne
computing platform

ISSN 1751-8628
Received on 22nd May 2019
Revised 24th September 2019
Accepted on 26th November 2019
E-First on 14th April 2020
doi: 10.1049/iet-com.2019.0515
www.ietdl.org

Baoqian Wang1,2, Junfei Xie1 , Songwei Li3, Yan Wan3, Yixin Gu3, Shengli Fu4, Kejie Lu5

1Department of Electrical and Computer Engineering, San Diego State University, San Diego, CA 92182, USA
2Department of Electrical and Computer Engineering, University of California San Diego, San Diego, CA 92093, USA
3Department of Electrical Engineering, University of Texas at Arlington, Arlington, Texas 76019, USA
4Department of Electrical Engineering, University of North Texas, Denton, Texas 76201, USA
5Department of Computer Science and Engineering, University of Puerto Rico at Mayagüez, Mayagüez 00681, Puerto Rico

 E-mail: jxie4@sdsu.edu

Abstract: In recent years, we have witnessed fast-growing unmanned aerial systems (UAS) based applications. To better
facilitate these applications, many efforts have been made to enhance the capability of UAS from various aspects, including
communications, control and networking, and so on. Nevertheless, most of these studies neglect the computation aspect.
Recently, the UAS-enabled mobile edge computing (MEC) has attracted increasing research attention, which utilises UAS with
onboard computing capability to provide on-demand computing services for mobile users. However, existing research on UAS-
enabled MEC remains at the theory stage and how to design a UAS platform with advanced onboard computing capability has
not been addressed. In this study, the authors aim to fill this research gap and design an open UAS-based airborne computing
platform with advanced onboard computing capability. This platform was designed from three aspects: hardware, software, and
applications. In particular, feasible computing hardware to perform UAS onboard computing is first considered and a prototype is
then designed. To enhance the flexibility and programmability of the platform, two key virtualisation techniques are then
investigated. Finally, they test the performance of their prototype by executing real UAS onboard computing tasks, the results of
which verify the feasibility and potentials of the proposed airborne computing platform.

1 Introduction
Over the past few years, unmanned aerial systems (UAS) have
become increasingly important. On the one hand, a single UAS or a
group of them can support many commercial and civilian
applications, such as forest-fire detection [1], reconnaissance [2],
search and rescue [3], and 3D mapping [4]. On the other hand,
UAS can be connected with many ground-based devices to
facilitate more applications, such as data collection [5], and so on.

In the literature, many researchers have been working on the
design of UAS platforms focusing on control [6], communications
[7–9], networking [10], and so on. Nevertheless, we notice that the
computation aspect of the UAS platforms has been largely
neglected. For instance, most existing UAS platforms have limited
computing capability and can perform only essential functionality,
such as flight control, image/video capturing, and sensor data
collection [11–14]. Consequently, computation-intensive tasks are
often offloaded to the ground stations or to the cloud, which may
lead to many issues. For instance, such a computing model may
lead to significant transmission delays or failures, and thus cannot
support many delay-sensitive applications. Moreover, for many
high-bandwidth applications, such as real-time object detection and
tracking, such a model requires large communication bandwidths,
which may not be feasible in certain scenarios.

With the rapid development of Internet of Things (IoT) and the
proliferation of mobile devices, the demand for computing
resources is increasing dramatically among mobile devices. To
address this challenge, mobile edge computing (MEC) [15] is
deemed a promising solution, which allows computation-intensive
and/or delay-sensitive tasks to run on resource-limited mobile
devices, by moving computing resources to the edge of cellular
networks. Recently, researchers propose to use UAS equipped with
computing capability as computing servers to assist MEC. Such
UAS-enabled MEC [16], once proposed, has attracted an
increasing research attention, which allows on-demand computing
services to be provided anytime and anywhere, even in the absence

of communication infrastructure. This is especially useful in
emergency scenarios where mobile users can leverage the onboard
computing resources of the UAS to perform advanced data analysis
for damage assessment [17].

Although researchers have realised the great potentials of UAS
as a computing platform, existing studies on UAS-enabled MEC
[17–23] are mainly based on theoretical analyses and simulations,
and consider problems such as computation offloading and UAS
trajectory design, and so on. The fundamental issue of how to
design a UAS platform with advanced onboard computing
capability has not been addressed. For instance, Jeong et al. [18]
studied the computation offloading process from a static mobile
device to a UAS with predetermined trajectory, and proposed an
optimal bit allocation strategy for communication and computing
to minimise the mobile energy consumption under maximum
latency constraints. Extended from this study, Jeong et al. [17]
further considered multiple mobile devices and UAS with
unknown trajectory, and developed a strategy that jointly optimises
bit allocation and UAS trajectory to minimise the total mobile
energy consumption under both maximum latency constraints and
UAS's energy budget constraint. As Jeong et al. [17, 18] assume all
local data are offloaded to the UAS for computing, which may be
impractical in reality due to the limitation of mobile devices'
transmit power, Hua et al. [19] further generalised the approach
and introduced a resource partitioning strategy, allowing part of the
computation task to be executed locally for reduced
communication energy consumption. Xiong et al. [20] studied a
similar problem, but considered a different UAS movement pattern
and the binary offloading paradigm, where the computation task is
either completed locally or offloaded to the UAS. As real
computational tasks are generated randomly, the stochastic
computation offloading was explored in [21], where a stochastic
queue model is used to simulate the arrival of computation tasks.
To address the scenarios where mobile devices have limited battery
energy for offloading or other computing tasks, Zhou et al. [22, 23]
proposed a UAS-enabled wireless powered MEC system, where

IET Commun., 2020, Vol. 14 Iss. 15, pp. 2410-2419
© The Institution of Engineering and Technology 2019

2410

Authorized licensed use limited to: San Diego State University. Downloaded on November 21,2020 at 23:44:48 UTC from IEEE Xplore. Restrictions apply.

UAS also functions as an energy transmitter to provide power
supply to mobile users through radio-frequency signals.

In this paper, we aim to fill the research gap and develop a new
UAS-based airborne computing platform, which not only has
advanced computing capability to allow data captured by UAS to
be processed directly onboard of UAS, but also supports broadband
wireless communication and networked UAS control to facilitate
various network-based UAS research development, applications
and services. Besides advancing UAS research, the proposed
airborne computing platform also promotes the development of
MEC. Compared with ground computing platforms, the UAS-
based MEC is advantageous in that it allows computing services to
be provided at anytime and anywhere, even in the absence of
communication infrastructure, due to the 3D mobility and high
manoeuvrability of UAS. Our airborne computing platform is open
to the community and can be accessed through our project website
[24].

Our main contributions include the following three parts:
hardware design, software design, and applications.

(1) Hardware design: We first investigate how to design and
implement the hardware of the UAS-based airborne computing
platform. Specifically, we discuss the desired features for the
airborne computing platform, especially according to the unique
UAS structure and applications. We then conduct a comprehensive
analysis and systematic study on ten state-of-the-art single-board
computers regarding the computation performance, power
consumption, size, and weight. Based on the thorough comparison,
we choose NVIDIA Jetson TX2 as the computing unit for the
platform. A prototype is then designed and implemented, which
integrates Jetson TX2 for onboard computations, UAS, broadband
communication system, and networked control system.
(2) Software design: With respect to the software of the platform,
we aim to design an airborne computing platform with sufficient
flexibility and programmability. A key technology to achieve this
goal is virtualisation, because it can efficiently manage resources,
can enable concurrent applications, and can enhance the security of
the computing platform. In this paper, we investigate two key
virtualisation techniques: (i) virtual machine (VM) using KVM
[25] and (ii) container using Docker [26]. To understand the impact
of virtualisation on UAS applications, we conduct extensive
experiments to measure the performance of the two virtualisation
techniques from the aspects crucial for UAS applications, including
computing, networking, isolation, power consumption, and so on.
The performance trade-offs are also discussed. These experiments
verify the feasibility of virtualising UAS and demonstrate the
potentials of virtualisation in enhancing UAS' onboard computing
capability. The insights obtained from the comparison results
between KVM and Docker also provide guidelines for the selection
of appropriate virtualisation techniques for UAS applications.
(3) Applications: Using the prototype with virtualisation supports,
we further test the performance of several real UAS applications
that may benefit from the onboard computing capability. For
instance, we test UAS image processing tasks of different
complexities to evaluate the benefit of virtualisation. We also test
the feasibility of performing real-time object detection onboard of
UAS. To understand the potentials of distributed computing over a
UAS network, we also implement an advanced coded distributed
computing approach for efficient matrix multiplication, which is
one of the most critical computing tasks for many artificial
intelligent applications.

The rest of this paper is organised as follows. In Section 2, we
discuss the hardware selection for UAS-based airborne computing,
and we present the details for the design of a prototype. Next, in
Section 3, we elaborate on the use of virtualisation to extend the
functionality of the airborne computing platform and we present
extensive experimental results on performance of the computing
platform with the virtualisation capability. We then further
investigate, in Section 4, the benefits of using the proposed
airborne computing platform for real computation-intensive UAS
applications. Finally, in Section 5, we conclude the paper with a
brief summary and future works.

2 Hardware design for the airborne computing
platform
In this section, we investigate the hardware design for UAS high-
performance onboard computing. In particular, we first discuss the
desired features for the onboard computing hardware. We then
analyse ten state-of-the-art single-board computers and provide
guidelines for choosing a suitable single-board computer as the
computing unit. A prototype designed based on a selected single-
board computer is then described.

2.1 Desired features

Since the onboard computing hardware is carried by a UAS, there
are some unique considerations for the selection of a single-board
computer. First, the computing hardware should be of light weight
and compact size, due to the limited payload and space provided by
the UAS. Second, because of the limited power capacity of the
UAS-carried batteries, it is preferable to have an efficient power
management system to reduce the power consumption. Third, in
terms of computing, the hardware should have a powerful CPU,
sufficient memory and storage to support most computing needs.
Moreover, a powerful GPU is also necessary to enable real-time
image processing and deep learning capabilities onboard of UAS.
Last but not the least, the single-board computer should have
extensive community support, such that developers and users can
share experience and seek online support during their system
development. In addition, it is also very important to have
sufficient open access design documentation and configuration
toolboxes.

2.2 Single-board computer selection

In the literature, several single-board computers are commonly
used for UAS operations, including Raspberry PI [27], Odroid XU
[28], Arduino Board [29], Cubieboard [30], Arndale Board [31],
and so on. In our study, we do not consider them because they are
not powerful enough to fulfill computation-intensive tasks.

Unlike the aforementioned computing devices, more powerful
single-board computers have not been fully investigated for UAS.
Recently, Shang and Shen [32] investigated the computing power
of NVIDIA Jetson TX1 [33] with 4 CPU cores, 256 Maxwell
CUDA GPU cores, and 4GB memory. Their studies show that
NVIDIA Jetson TX1 is still not sufficient enough to achieve real-
time 3D reconstruction and mapping using the simultaneous
localisation and mapping algorithm.

To select a suitable single-board computer to enable UAS high-
performance onboard computing, we consider those with
computing capability comparable to Jetson TX1. In particular, ten
state-of-the-art single-board computers, including NVIDIA Jetson
TX2 [34], UDOO X86 ULTRA [35], Intel Aero Compute Board
[36], LattePanda Alpha [37], Up Squared [38], NVIDIA Jetson
Xavier [39], DJI Manifold [40], HiKey960 [41], Rock960 [42], and
Jetson TX1 [33], are found and compared in detail from various
aspects (see Table 1 for the comparison results).

As shown in Table 1, Jetson Xavier with 8 CPU cores and 512-
core Volta GPU with Tensor cores has the highest computing
power. Jetson Xavier also excels in memory capacity. However, it
is the most power consuming and costly, and it does not natively
support Wi-Fi communications. Jetson TX2 with 6 CPU cores,
256-core NVIDIA Pascal GPU, and 8GB memory is the second
powerful single-board computer. It provides an out-of-the-box
high-throughput wireless local area network (WLAN) interface,
and is also the smallest in size. UDOO X86 ULTRA outperforms
others in power consumption and operating system (OS) support;
Intel Aero Compute Board is the lightest among those with known
weight information; Rock960 is of the lowest cost; and Up Squared
has the largest storage. All these single-board computers support
virtualisation.

The above analysis provides us with guidelines to select proper
single-board computers for UAS high-performance onboard
computing. A trade-off should be achieved among different
performance aspects based on the needs of specific applications.
For instance, if flight time is more critical than real-time

IET Commun., 2020, Vol. 14 Iss. 15, pp. 2410-2419
© The Institution of Engineering and Technology 2019

2411

Authorized licensed use limited to: San Diego State University. Downloaded on November 21,2020 at 23:44:48 UTC from IEEE Xplore. Restrictions apply.

processing, UDOO X86 ULTRA that consumes less power or the
lightweight Intel Aero Compute Board may be selected. If cost is
of the major concern, Rock960 can be a good choice.

In this study, we select the NVIDIA Jetson TX2 as the
computing hardware for the airborne computing platform. As
shown in Table 1, its overall computing capability is above the
average, especially considering the availability of a powerful GPU.
Both the power consumption (7.5 W) and weight (85 g) are around

the average. Another attractive factor is that there is an open-access
online support community including FAQ and forum [43], which is
very helpful for project developers.

While Jetson TX2 has a small size of 50 mm×87 mm, the
development board provided by NVIDIA is very large (17 cm ×
17cm). To address this issue, we design a new carrier board, as
shown in Fig. 1a, based on the following technical specifications.
The carrier board has a dimension of 88 mm×65 mm with weight

Table 1 Comparison of different single-board computers
CPU GPU Memory Connectivity Dimension,

mm
Power

consumption
OS Weight Virtualisation

support
Storage, 

GB
Price

Jetson TX2 Denver 2
(2 cores)

2 MB
Cache, 2 

GHz +
ARM®

A57 (4
cores) 2 

MB
Cache,
2GHz

256-core
NVIDIA
Pascal
GPU

8 GB 1 Gigabit Ethernet,
802.11ac

WLAN,Bluetooth

50 × 87 7.5W Linux 85 g yes 32 $400

UDOO X86
ULTRA

Intel®
Pentium
N3710 (4
cores) 2 

MB
Cache,

2.56 GHz

Intel® HD
Graphics
16 units,
405–700 

MHz

8 GB 1 Gigabit Ethernet,
M.2 Key E slot for
optional Wireless
(WiFi+Bluetooth)

120 × 85 6 W Windows,
Linux,

Android

117 g yes 32 $267

Intel Aero
Compute
Board

Intel®

AtomTM

x7-Z8750
(4 cores)

2 MB
Cache,

2.56GHz

Intel® HD
Graphics
16 units,
405-600

MHz

4 GB Intel® Dual Band
Wireless-AC 8260

88 × 63 × 20 7.5 W Linux 30 g yes 32 $399

Lattepanda
Alpha

Intel® 7th
Gen

M3-7Y30
(2 cores)

4 MB
Cache,

2.60 GHz

Intel® HD
Graphics
615 300–
900 MHz

8 GB 1 Gigabit Ethernet,
802.11ac WLAN,

Bluetooth

113 × 80 × 13.5 NA Windows,
Linux

104 g yes 64 $398

UP
Squared

Intel®
Apollo

Lake (2-4
cores)

Intel®
Gen 9 HD

with 12
(Celeron)

or 18
(Pentium)
Execution

Units

8 GB 1 Gigabit Ethernet,
802.11ac WLAN,

Bluetooth

85.6 × 90 NA Windows,
Linux,

Android

NA yes 128 $399

Jetson
Xavier

ARM
V8.2 (8

cores) 8 
MB L2+4 
MB L3,

2.26 GHz

512-core
Volta

GPU with
Tensor
Cores

16 GB 1 Gigabit Ethernet 100 × 87 × 16 10–30 W Linux NA yes 32 $1299

DJI
Manifold

ARM
Cortex-
A15 (4
cores)

192-core
NVIDIA
CUDA
GPU

2 GB 10/100/1000BASE-
T Ethernet

110 × 110 × 26 5–15 W Linux 197 g yes 16 $499

HiKey 960 ARM
Cortex-
A73 (4
cores)

+Cortex
A53 (4
cores)

ARM Mali
G71 MP8

4 GB WiFi, Bluetooth 4.1 85 × 55 × 9 NA Linux,
AOSP

60 g yes 32 $249

2412 IET Commun., 2020, Vol. 14 Iss. 15, pp. 2410-2419
© The Institution of Engineering and Technology 2019

Authorized licensed use limited to: San Diego State University. Downloaded on November 21,2020 at 23:44:48 UTC from IEEE Xplore. Restrictions apply.

of 53 g. The interfaces provided by the board include one HDMI,
three UART, one CAN bus, one micro USB, one USB 2.0/3.0, one
Ethernet port, four GPIO, and two camera ports. The carrier board
with Jetson TX2 is shown in Fig. 1b.

2.3 Prototype

With Jetson TX2 chosen as the computing unit, we then develop a
prototype of the airborne computing platform [44, 45] that also
incorporates a quadcopter unit for lifting and mobility, a
communication unit for UAS-to-UAS (U2U), UAS-to-ground
(U2G) and ground-to-UAS (G2U) communications, and a control
unit for addressing communications, networking, UAS navigation
and application needs (see Fig. 2).

2.3.1 Quadcopter unit: The quadcopter unit serves as a platform
carrier to carry other units. Compared with fixed-wing UAS,
quadcopters are easier to operate, allow vertical taking off and
landing, and can hover in the air. Here we select DJI Matrice 100
[46] as the quadcopter unit, due to its nice properties in terms of
payload, expandability, stability, and operability. For instance, the
maximum weight allowed for the DJI Matrice 100 while taking off
is 3.6 kg, which exceeds the total weight of the whole system of
3.13 kg. With a LiPo 6 s battery, our prototype can fly for around
18 min.

2.3.2 Communication unit: The communication unit supports the
U2U and U2G/G2U communications. For U2U communication,

we choose Ubiquiti Nanostation Loco M5 [47], a directional
antenna, to enable long-range and broadband communication
between two UAS. The transmission rate achieves up to 150 Mbps,
allowing real-time video transmission. The maximum transmission
distance is 10 km. For U2G/G2U communication, Huawei WS323
[48] is selected as the Wi-Fi router to enable communication
between ground devices and the UAS, where ground devices
connect to the router through the WLAN. Through this link, sensor
data such as videos captured by the UAS can be transmitted to the
ground for visualisation and analysis.

2.3.3 Control unit: The control unit consists of two sub-units:
UAS flight control and directional antenna control. In particular,
the UAS flight control sub-unit makes the UAS follow desired
trajectories, while maintaining stability. It translates high-level
control commands received from the remote pilot to motor pulse
width modulation (PWM) signals, based on UAS state
measurements captured by sensors such as GPS and inertial
measurement unit. The directional antenna control sub-unit
controls the heading direction of the directional antenna to
maximise the performance of directional communication. This sub-
unit is composed of a rotating motor, a tunable plate, a motor
driver, and a compass. The tunable plate carries the directional
antenna and the compass. To rotate the plate to a specified angle,
the motor driver takes the control signal generated by the
computing unit and translates it to PWM signals. The motor then
drives the plate to rotate based on the PWM signals. Here we select
MTI-3-8A7G6T Xsens and Adafruit TB6612 as the compass and
the motor driver, respectively.

3 Software design for the airborne computing
platform
In this section, we investigate two key virtualisation techniques,
VM [49] using KVM and container using Docker [26], to improve
the flexibility and programmability of the airborne computing
platform. In particular, we first provide a brief overview of the
current research status in the field of virtualisation. To understand
the impact of virtualisation, we then conduct a series of
experiments to study their performances from multiple aspects,
including computing, networking, isolation, power consumption,
and so on, as well as the trade-offs among them.

3.1 Background and related work

To support diverse computing tasks on the same UAS platform,
one of the key technologies is virtualisation. First, virtualisation
provides powerful resource management capabilities, so that it can
efficiently enable an application with specific computing
requirements, such as CPU, memory, storage, networking, and so
on. Second, virtualisation can facilitate concurrent execution of
multiple applications on the same UAS. Third, in terms of security,
virtualisation can isolate unreliable and untrustworthy
functionality, and improve the resilience of UAS to malicious
attacks [50]. In addition to these advantages on a single UAS,
virtualisation can help to exploit the distributed computing
capabilities on multiple connected UAS, which can evolve towards
future generation of the networked airborne computing.

 
CPU GPU Memory Connectivity Dimension,

mm
Power

consumption
OS Weight Virtualisation

support
Storage, 

GB
Price

Rock
960

ARM Cortex-
A72 (2
cores)

Cortex A53
(4 cores)

ARM Mali
T860 MP4

4 GB WLAN 802.11
ac/a/b/g/n,

Bluetooth 4.2

85 × 54 × 11 NA Linux,
AOSP

120 g yes 32 $139

Jetson
TX1

ARM Cortex-
A57 (4

cores) 2 MB
L2

256-core
NVIDIA
Maxwell

GPU

4 GB 1 Gigabit
Ethernet,802.11ac
WLAN, Bluetooth

50 × 87 10 W Linux 88 g yes 16 $299

Fig. 1  New Jetson TX2 carrier board
(a) Without the processor, (b) With the processor

Fig. 2  Prototype of the airborne computing platform

IET Commun., 2020, Vol. 14 Iss. 15, pp. 2410-2419
© The Institution of Engineering and Technology 2019

2413

Authorized licensed use limited to: San Diego State University. Downloaded on November 21,2020 at 23:44:48 UTC from IEEE Xplore. Restrictions apply.

Virtualisation has been studied extensively in the literature. The
server-based virtualisation has been mature and widely
implemented in computing systems, especially the cloud [51–53].
Virtualisation for mobile devices is more relevant to this study,
which has aroused increasing attention with the wide use of mobile
devices and the fast evolution of ARM processors, but is still under
development [54]. In the last few years, several studies have
investigated the performance of virtualisation on different mobile
devices, such as Raspberry PI 2 [55], Cubieboard2 [56], ARM
Chromebook [57], Banana Pi [58], and Insignal Arndale board
[59], and so on. However, since these studies were not directed to
UAS, their performance analysis was limited to CPU, memory, and
disk in a single device. The unique features of UAS such as small
payload, power constraint, and real-time computing need, as well
as the special characteristics of multi-UAS applications such as
U2U communications and network connectivity were also not
considered in these studies.

Virtualisation has also played a critical role in emerging
computing paradigms including IoT, fog computing, and MEC. For
instance, container-based virtualisation is applied in [60, 61] to
enable data processing at IoT devices. A Docker-based fog
computing framework over Raspberry PI is described in [62]. In
[63], the integration of IoT and fog computing with virtualisation
deployed in fog nodes is studied.

Despite the abundant works on virtualisation, virtualisation for
UAS has been rarely studied. Among the limited studies we can
find, paper [50] utilises virtualisation to enhance the resilience of
UAS to malicious attacks, where Raspberry PI 2 is adopted as the
onboard computing unit. Nutanix recently released a commercial
UAS cloud platform, called Acropolis [64], which can hold
multiple VMs. In [65], virtualisation is implemented on fog servers
to provide computing services for UAS fire detection. Overall, a
comprehensive investigation of virtualisation for UAS to enable
high-performance onboard computing and advanced UAS
applications is still lacking.

Virtualisation can extend the computing capabilities of UAS, at
a cost of performance overheads, due to resource partition,
isolation, and emulation. To understand the impact of
virtualisation, we next investigate the performances of two key
virtualisation techniques, KVM [25] and Docker [26], which are
representatives of the hypervisor-based and container-based
virtualisation techniques, respectively. Please refer to [66] for a
brief introduction of the two virtualisation techniques, and the

instructions to implement these techniques on Jetson TX2. In this
study, both guest (VM or container) and host systems in Jetson
TX2 implement Ubuntu 16.04 LTS with Linux kernel version 4.4
as the OS.

3.2 Computing performance

In this subsection, we investigate the impact of KVM and Docker
on the CPU and GPU computing performances of the proposed
airborne computing platform, which is crucial for the success of
many time-critical UAS applications.

3.2.1 Experimental setup: To measure the computing
performance of the airborne computing platform with virtualisation
capability, we create a VM that virtualises CPU or GPU resources
using KVM (or container using Docker) on the platform, and
install the Rodinia Benchmark Suite [67] in the VM (or container).
We then run the Stream Cluster (SC) application in the benchmark,
which performs clustering for data streams. The execution time of
the SC application indicates the computing performance. To reduce
experimental uncertainty, each experiment is repeated for ten times
and the average execution time of the SC application is presented.
This procedure is also applied to each experiment conducted in
following studies.

In the experiment on the CPU performance, as the benchmark
supports CPU multi-threading, which allows applications to be
executed by multiple CPU cores in parallel, we vary the number of
threads to test the parallel CPU computing performance. Note that
each thread uses one CPU core. As only four ARM A57 CPU cores
can be virtualised using KVM, up to four threads are evaluated for
KVM. Docker successfully virtualises all six CPU cores in Jetson
TX2, and thus up to six threads are evaluated for Docker.

In the experiment on the GPU performance, as KVM does not
support CUDA based GPU [68], we only evaluate the impact of
Docker on the GPU performance, which adopts the PCI pass-
through technique [69] to achieve GPU virtualisation. We also
compare the GPU performance of the airborne computing platform
with its best CPU performance, i.e. using six threads. In both
experiments, we vary the size of the input data stream in the SC
application to test the scalability of the computing platform.

3.2.2 Experimental results: Fig. 3 shows the CPU performance
of the airborne computing platform before and after implementing
KVM or Docker. As shown in the figure, both KVM and Docker
introduce performance overheads, and KVM degrades the
computing performance more. This is because KVM adopts more
complicated procedures to allocate memory resources, in particular
using second-level address translation [25], while Docker achieves
this by directly utilising the Linux system utility, i.e. control groups
(cgroups) [26]. Our experiments also show that running five or six
threads on Denver CPU cores does not improve the efficiency
when the size of the data stream is small (see Fig. 3a). This is due
to the overheads for coordinating different CPU processors.

Fig. 4 compares the performance of GPU and that of the CPU in
two scenarios, i.e. before and after implementing Docker. As we
can see from the figure, the computing performance of GPU is
slightly worse than that of the hex-core CPU when the problem
size is small, but GPU significantly outperforms the CPU when the
problem size is large.

3.3 Networking performance

In this subsection, we investigate the impact of KVM and Docker
on the networking performance of the airborne computing
platform, which is crucial for reliable and timely information
sharing between UAS and ground mobile devices as well as among
UAS.

3.3.1 Experimental setup: In this study, we conduct experiments
to evaluate the networking performance for both the G2U/U2G and
U2U communication links. To test the G2U/U2G communication
link, we connect the airborne computing platform to a ThinkPad
E540 laptop with the bandwidth of the Wi-Fi route set to 40 Mbps.

Fig. 3  Execution time of the SC application implemented on CPU using
increasing number of threads. The number of input points in the SC
application is set to
(a) 10,000, (b) 900,000

Fig. 4  Execution time of the SC application implemented on GPU and
CPU of six threads. The number of input points in the SC application is set
to
(a) 10,000, (b) 900,000

2414 IET Commun., 2020, Vol. 14 Iss. 15, pp. 2410-2419
© The Institution of Engineering and Technology 2019

Authorized licensed use limited to: San Diego State University. Downloaded on November 21,2020 at 23:44:48 UTC from IEEE Xplore. Restrictions apply.

To test the U2U communication link, we consider two scenarios:
(i) the omni-directional antenna based short-distance
communications and (ii) directional antenna based long-distance
communications. These two scenarios are tested by linking two
computing platforms using the Wi-Fi router and the Ubiquiti
Nanostation Loco M5, respectively.

To measure the networking performance, we install the Iperf
benchmark [70] on airborne computing platforms and the Thinkpad
laptop. This benchmark measures the throughput between two
connected devices by sending data streams from one device (called
client) to the other (called server). To obtain a comprehensive
understanding of the networking performance, we vary the role of
the airborne computing platform (client or server) and also vary the
transmission protocol (TCP or UDP).

3.3.2 Experimental results: The networking performance of the
airborne computing platform before and after implementing KVM
or Docker under different networking configurations is shown in
Fig. 5.

In all these experiments, Docker shows less impact on the
networking performance than KVM. This is due to the simplicity
of Docker in network virtualisation. In particular, unlike KVM that
requires emulation of network devices in VMs to enable
communications, Docker containers can directly build network
connections by using the Linux system utilities, e.g. network
namespace [26]. Another phenomenon observed in all experiments
is that higher bandwidths are achieved when the UDP transmission
protocol is adopted, as UDP sends packets continuously without
acknowledgements.

Now let us analyse each subfigure. Fig. 5a shows that the
bandwidth of the G2U/U2G communications increases when the
airborne computing platform acts as a server. This is mainly caused
by the use of different network devices in Jetson TX2 and
ThinkPad laptop. In cases when two identical airborne computing

platforms are connected to simulate the U2U communications, the
bandwidth measured at the server side is smaller than that
measured at the client side (see Figs. 5b and c). This is because
VM or container requires port forwarding to receive packets, which
introduces some overheads [71, 72]. The comparison between Fig.
5c and the other two subfigures suggests that the high bandwidth is
achieved by directional antennas, demonstrating their advantage
over omni-directional antennas. Of interest, in Fig. 5c, when the
TCP transmission protocol is adopted, the bandwidth measured at
the client side increases after virtualisation. This may be caused by
the bridge network in KVM and Docker, which buffers packets
sent from the guest to the host network interface and in turn helps
alleviate traffic congestion and increases the packet transmission
rate.

3.4 Isolation performance

Virtualisation can enhance the security of UAS applications, by
isolating unreliable functionality. It can also enable concurrent
execution of programs with different system requirements on the
same airborne computing platform, by running these programs in
different VMs (or containers). The success of these applications
relies on how well VMs (or containers) are isolated, which is
investigated in this subsection.

3.4.1 Experimental setup: To test the isolation performance of
KVM and Docker, we follow similar experimental setups in [73].
In particular, we create two guests (VMs or containers) in the
airborne computing platform, and assign each guest with two ARM
A57 CPU cores exclusively. We then install the Isolation
Benchmark Suite (IBS) [74] to evaluate the isolation performance,
which works by measuring the impact of a misbehaved guest (runs
a stress test) on a well-behaved one (runs a baseline application).
The smaller the impact is, the better the two guests are isolated. In
this study, we run the lower-upper Gauss–Seidel solver (LU)
application in the well-behaved guest, which performs a synthetic
computational fluid dynamics calculation for a cubic region [75].
We here set the cubic size to 64 × 64 × 64. In the misbehaved
guest, we run different stress tests available in IBS to test the
performance of KVM and Docker in isolating different hardware
resources.

To evaluate the impact of the misbehaved guest on the well-
behaved one, we measure the performance degradation of the well-
behaved guest using the following equation:

Ts − Tn
Tn

× 100% (1)

where Tn and Ts represent the execution time of the LU application
before and after running the stress test in the misbehaved guest,
respectively.

3.4.2 Experimental results: Table 2 shows the isolation
performance of KVM and Docker in different stress tests. In
particular, Docker demonstrates less performance degradation than
KVM in the CPU, memory, disk I/O, and network intensive stress
tests, indicating relatively better performance in isolating these
hardware resources. This is because Docker directly uses Linux
namespaces to achieve isolation, but KVM utilises the hypervisor's
trap-and-emulate mechanism that hangs the rest of the VMs when
one traps to the hypervisor [25]. In the fork bomb test that
generates large amount of processes to overwhelm the OS, the
performance of Docker degrades significantly compared to KVM,
as containers share the same OS kernel with the host system.
Overall, both KVM and Docker perform well in isolating CPU
resources, as different VMs or containers occupy different CPU
cores. However, both are relatively weak in isolating the other
hardware resources.

Fig. 5  Bandwidth of the communication link
(a) Between airborne computing platform and ThinkPad laptop connected using a Wi-
Fi router, (b) Between two airborne computing platforms connected using a Wi-Fi
router, (c) Between two airborne computing platforms connected using directional
antennas

Table 2 Performance degradation of the well-behaved
guest in different stress tests

Docker, % KVM, %
CPU 0.36 0.41
memory 5.03 6.0
disk I/O 2.56 2.9
fork bomb 6.24 1.28
network receiver 2.25 4.68
network sender 1.73 2.53

IET Commun., 2020, Vol. 14 Iss. 15, pp. 2410-2419
© The Institution of Engineering and Technology 2019

2415

Authorized licensed use limited to: San Diego State University. Downloaded on November 21,2020 at 23:44:48 UTC from IEEE Xplore. Restrictions apply.

3.5 Power consumption

In this section, we study the impact of KVM and Docker on power
consumption, which directly influences the flight endurance of the
proposed airborne computing platform.

3.5.1 Experimental setup: To measure the power consumption of
the airborne computing platform, we use the built-in three-channel
INA 3221 monitors in Jetson TX2 [76]. Two experiments are then
conducted to evaluate the impact of KVM and Docker on the
power consumption of the airborne computing platform at different
operating conditions. Particularly, in the first experiment, the
airborne computing platform does not run any applications, and its
power consumption is measured before and after implementing
KVM or Docker. In the second experiment, the power consumption
of the platform when running the SC application is measured.

3.5.2 Experimental results: The power consumption of the
airborne computing platform before and after implementing KVM
or Docker in the two experiments is shown in Fig. 6. As we can
see, both KVM and Docker increase the power consumption
slightly in the two experiments. KVM consumes more power than
Docker, as it introduces more overhead. Also note that compared
with the power consumed by running the SC application, the power
consumed by virtualisation is negligible.

3.6 Discussions

In the above comparative studies, we evaluate the performances of
KVM and Docker from the aspects of computing, networking,
isolation, and power consumption that are of major concern to
UAS applications. In this subsection, we briefly discuss other
performance aspects that are also of interest.

3.6.1 Resource usage: Compared with VMs, containers
consume fewer resources and thus can be quickly deployed. To
demonstrate this feature, we conduct a simple experiment to
measure the resource usage of a bare VM (or container) created by
KVM (or Docker). No applications run in the VM or container.
Table 3 summarises the CPU, memory and storage usage of a bare
VM or container measured using the sysstat and free Linux
commands [77].

3.6.2 Live migration: The live migration allows a running VM (or
container) to be migrated from one computing platform to another,
without interruptions during the migration process. Both Docker
and KVM support live migration on server-based devices [49, 78].
However, live migration on mobile devices has been rarely studied
and KVM currently does not support live migration on ARM-based
devices. In addition, no solution is currently available for the
Docker container-based live migration on Jetson TX2. We expect
that this can be realised using checkpoints and restore utility [79],
which we will leave to the future work.

3.6.3 OS support: On ARM-based Linux single-board computers,
KVM supports unmodified guest OSs [25], such as Ubuntu and
openSUSE. However, Docker only supports ARM-based images
[80], such as arm64v8/ubuntu, windows/nanoserver, and windows/
iotcore.

3.6.4 Security: KVM is more resilient to malicious attacks than
Docker. As VMs have their own OSs and kernels, the collapse of
one VM does not influence others. However, containers share the
kernel with the host OS. Therefore, once one container is attacked,
other containers or even the whole system may collapse. For
verification, we conduct a simple test. Specifically, we run the fork
bomb, a denial-of-service attack, in the VM and container,
respectively. As shown in Fig. 7, the host OS works properly when
the VM is under attack, but collapses when the container is
attacked.

In summary, Docker achieves better performance than KVM in
most aspects relevant to UAS applications, including computing,
networking, isolation of CPU, memory, disk I/O and network
resources, power consumption, and resource usage. Docker
successfully virtualises all CPU cores and GPU in Jetson TX2, but
KVM can only virtualise the four ARM A57 CPU cores. On the
other hand, KVM provides higher security. To enable more
advanced UAS applications, the strengths of KVM and Docker
need to be integrated. Live migration on ARM-based devices also
needs to be realised for both KVM and Docker.

4 Performance of the airborne computing
platform
In this section, we investigate the performance of the proposed
airborne computing platform in supporting real UAS applications.
In particular, we first use OpenDroneMap for UAS image
processing to illustrate the benefits of virtualisation. We then
further investigate the performance of two advanced UAS onboard
computing tasks, real-time object detection and coded distributed
computing.

4.1 OpenDroneMap

OpenDroneMap is an open-source UAS image processing software
[81]. In this study, we first use the image resizing and 3D model
reconstruction functions in OpenDroneMap that require different
amount of computing resources to investigate the impact of
virtualisation on the computing performance. Fig. 8 shows the
average execution time of the two functions to process a UAS
image with size of 3.9 MB in different virtualisation environments
[UAS images are downloaded through this link: https://github.com/
OpenDroneMap/odm_data_copr.git.]. The results demonstrate the
advantage of Docker over KVM, especially in computing
complicated UAS onboard computing tasks. The 3D geographical
model reconstructed from 41 2D UAS images is shown in Fig. 9.

Fig. 6  Power consumption of the airborne computing platform before and
after running the SC application

Table 3 Resource usage of a bare VM or container

VM Container
CPU 2.7% 0%
memory 476 MB 0.3 MB
storage 1.3 GB 103 MB

Fig. 7  Response of the host OS when the
(a) VM is attacked, (b) Container is attacked

2416 IET Commun., 2020, Vol. 14 Iss. 15, pp. 2410-2419
© The Institution of Engineering and Technology 2019

Authorized licensed use limited to: San Diego State University. Downloaded on November 21,2020 at 23:44:48 UTC from IEEE Xplore. Restrictions apply.

We next use OpenDroneMap to demonstrate the benefits of
virtualisation in facilitating resource management for UAS.
Generally, virtualisation provides developers with the convenience
to run multiple applications simultaneously without considering
resource sharing and context switches among processes, which will
increase the execution time of the applications. To illustrate this

fact, we first conduct experiments to show the consequence of
running two applications simultaneously when virtualisation is not
applied. Fig. 10a shows the execution time of the LU application
(cubic size is set to 36 × 36 × 36) and the image resizing function
in OpenDroneMap (processes 41 UAS images) when they run
separately on the airborne computing platform compared to the
case when they run simultaneously. As we can see from this figure,
when the two applications run simultaneously, the execution time
of both applications increases significantly, and the LU application
even takes more time than the OpenDroneMap application.

We then implement virtualisation on the airborne computing
platform, and run the two applications simultaneously but in
different guests. For better overall performance, the guest that runs
the LU application is allocated with one CPU core, and the one that
runs the more computation-intensive OpenDroneMap application is
allocated with three CPU cores. As shown in Fig. 10b,
virtualisation helps improve the overall computing performance
significantly through resource allocation and isolation, despite the
associated overhead.

4.2 Real-time object detection

Real-time object detection is crucial for many UAS applications
including search and rescue, traffic monitoring, infrastructure
inspection, and reconnaissance. As this type of task is
computationally demanding, it is typically executed at ground
stations or the cloud. In this study, we show that real-time object
detection can be achieved onboard of UAS even with
virtualisation.

Consider the scenario where UAS is dispatched to detect and
track humans in a search and rescue mission. To achieve this, we
implement a deep neural network (DNN) model [82] on the
airborne computing platform, which is built on GPU and uses
NVIDIA TensorRT and cuDNN. This model has been pre-trained
for human detection. We use ten images captured from a UAS
action video [83] to evaluate the average execution time of this
model to process a UAS image. In particular, the average
recognition times of the airborne computing platform without
virtualisation and with Docker container-based virtualisation are
around 0.129 and 0.148 s per image of size 850 kB, respectively.
This demonstrates the feasibility of performing real-time object
detection onboard of UAS even with virtualisation. Note that it
takes around 0.253 and 0.267 s to transmit a single image of size
850 kB from the airborne computing platform without
virtualisation and with Docker-based virtualisation, respectively, to
the ground (Thinkpad laptop) through omni-directional antenna-
and UDP-based communication, according to the results shown in
Fig. 5a. Fig. 11 illustrates the accuracy of the DNN model in
recognising humans on a UAS image.

4.3 Distributed computing using codes

The onboard computing performance of UAS can be further
enhanced by allowing tasks to be distributed over multiple
platforms. Traditional distributed systems that allocate non-
overlapping tasks to different computing nodes are sensitive to
system noises such as stragglers and communication bottlenecks
[84] and thus may not be suitable for UAS of high mobility and
uncertain trajectories. Recently, coded computation was developed
in [84] to address this issue. In this study, we investigate the
performances of both uncoded and coded computations on the
proposed airborne computing platform. Before we show the
experimental results, let us first use an example to describe the key
ideas of the two approaches.

Consider the matrix multiplication problem described in [84],
which aims to multiply a large input matrix X with another pre-
stored matrix A. To reduce the computation time, the traditional
approach (see Fig. 12a for an illustration) distributes the task by
storing sub-matrices Ai of A at different computing nodes called
worker nodes, where A = [A1; A2; …; An] and n is the total number
of sub-matrices. To compute AX, a master node first sends X to all
worker nodes. Each worker node then computes AiX and sends the
result back to the master node. As the master node cannot recover

Fig. 8  Execution time of the
(a) Image resizing, (b) 3D model reconstruction functions in OpenDroneMap to
process a UAS image in different virtualisation environments

Fig. 9  3D geographical model generated from 41 UAS images using the
3D model reconstruction function in OpenDroneMap

Fig. 10  Execution time of two applications
(a) When running separately and when running simultaneously in Jetson TX2 without
virtualisation, (b) When running simultaneously in Jetson TX2 of three different
virtualisation setups

Fig. 11  UAS image
(a) Before applying the DNN based object detection, (b) After applying the DNN
based object detection

Fig. 12  Illustration of the
(a) Uncoded computation to perform matrix multiplication with n = 2, (b) Coded
computation to perform matrix multiplication with n = 2. The numbers marked in
green describe the computation procedures

IET Commun., 2020, Vol. 14 Iss. 15, pp. 2410-2419
© The Institution of Engineering and Technology 2019

2417

Authorized licensed use limited to: San Diego State University. Downloaded on November 21,2020 at 23:44:48 UTC from IEEE Xplore. Restrictions apply.

AX until all results are received, the efficacy of this approach is
bounded by the slowest worker node, i.e. the straggler. The coded
computation (see Fig. 12b for an illustration) addresses this issue
by introducing redundancy into the computation through erasure
codes. For instance, consider the matrix multiplication problem
with n = 2, the coded approach introduces an additional worker
node that stores A1 + A2. Therefore, the master node can recover
AX upon receiving the results from any two worker nodes. For
instance, if A1X and (A1 + A2)X arrive at the master node first, AX
can be recovered by AX = [A1X; (A1 + A2)X − A1X].

To evaluate the performances of the uncoded and coded
computations, we implement each approach to solve the matrix
multiplication problem with n = 2. In particular, we create three
containers as the worker nodes in one airborne computing
platform, and one container as the master node in another platform.
Each container is assigned with one CPU core. Containers on
different airborne computing platforms are linked through the Loco
M5 to simulate the directional-antenna based long-distance U2U
communications. We then create two 800 × 800 random matrices,
A and X. Matrix A is divided equally into two sub-matrices A1 and
A2 of size 400 × 800. The execution time of the two approaches to
compute AX is provided in Table 4, where two scenarios are
evaluated. In the first scenario, only matrix multiplication is
performed within each container and thus no straggler exists. In the
second scenario, a CPU stress test is executed concurrently in one
of the worker nodes to consume its computing resources. This
worker node thus becomes a straggler. The results shown in Table
4 illustrate the robustness of the coded computation to system
noises such as stragglers. In the future, we will extend this study to
achieve optimal task allocation and resource management for
networked airborne computing using coded computation.

5 Conclusion
In this paper, we developed a new UAS-based airborne computing
platform to address the onboard computing limitations of existing
UAS platforms so as to support UAS-enabled MEC and to enable
more advanced UAS applications. This airborne computing
platform was designed from three aspects: hardware, software, and
applications. To design the hardware, we first investigated the
desired features for the onboard computing hardware, and then
conducted a comprehensive comparison study among state-of-the-
art single-board computers to select a suitable one as the
computing unit. A prototype was then designed and implemented,
which not only contains the computing unit, but also hardware for
UAS mobility, communications, and control. To design the
software, we investigated two representative virtualisation
techniques, VM using KVM and container using Docker, and
evaluated their performances from various aspects. Through
comprehensive experimental studies, we find that Docker
outperforms KVM in most performance aspects, including
computing, networking, isolation of most hardware resources,
power consumption, and resource usage. Docker also successfully
virtualises all CPU cores and GPU in Jetson TX2. On the other
hand, KVM is more secure. Finally, we studied three real UAS
applications, including UAS image processing, real-time object
detection, and coded distributed computing, to demonstrate the
performance, applicability and potentials of the proposed airborne
computing platform.

In the future, we will investigate the integration of KVM and
Docker to maximise their strengths. We will also study the KVM
and Docker based live migration and distributed computing
techniques to enable networked airborne computing that shares
resources among multiple UAS. We will also explore UAS

mobility control and computation offloading strategies [85] to
optimise the computing services to ground users.

6 Acknowledgments
The authors thank National Science Foundation under grants
CI-1953048, 1730589/1730675/1730570/1730325 and
CAREER-1714519, for the support of this work.

7 References
[1] Casbeer, D.W., Beard, R.W., McLain, T.W., et al.: ‘Forest fire monitoring

with multiple small uavs’. Proc. of the 2005 American Control Conf., Hilton
Portland, Portland, Oregon, June 2005, pp. 3530–3535

[2] Kuiper, E., Nadjm-Tehrani, S.: ‘Mobility models for UAV group
reconnaissance applications’. Proc. of the 2006 Int. Conf. on Wireless and
Mobile Communications, Vancouver, Canada, July 2006, pp. 33–33

[3] Tomic, T., Schmid, K., Lutz, P., et al.: ‘Toward a fully autonomous UAV:
research platform for indoor and outdoor urban search and rescue’, IEEE
Robot. Autom. Mag., 2012, 19, (3), pp. 46–56

[4] Nex, F., Remondino, F.: ‘UAV for 3D mapping applications: a review’, Appl.
Geom., 2014, 6, (1), pp. 1–15

[5] Abdulla, A.E., Fadlullah, Z.M., Nishiyama, H., et al.: ‘An optimal data
collection technique for improved utility in uas-aided networks’. Proc. of the
2014 INFOCOM, Toronto, Canada, July 2014, pp. 736–744

[6] Satici, A.C., Poonawala, H., Spong, M.W.: ‘Robust optimal control of
quadrotor UAVs’, IEEE Access, 2013, 1, pp. 79–93

[7] Fotouhi, A., Ding, M., Hassan, M.: ‘Flying drone base stations for macro
hotspots’, IEEE Access, 2018, 6, pp. 19530–19539

[8] Li, K., Ni, W., Wang, X., et al.: ‘Energy-efficient cooperative relaying for
unmanned aerial vehicles’, IEEE Trans. Mob. Comput., 2016, 15, (6), pp.
1377–1386

[9] Mozaffari, M., Saad, W., Bennis, M., et al.: ‘Mobile internet of things: can
UAVs provide an energy-efficient mobile architecture?’. Proc. of 2016 Global
Communications Conf. (GLOBECOM), Washington, D.C., USA, December
2016, pp. 1–6

[10] Fadlullah, Z.M., Takaishi, D., Nishiyama, H., et al.: ‘A dynamic trajectory
control algorithm for improving the communication throughput and delay in
UAV-aided networks’, IEEE Netw., 2016, 30, (1), pp. 100–105

[11] Motlagh, N.H., Bagaa, M., Taleb, T.: ‘UAV-based IoT platform: a crowd
surveillance use case’, IEEE Commun. Mag., 2017, 55, (2), pp. 128–134

[12] Qureshi, B., Koubaa, A., Sriti, M.F., et al.: ‘Poster: dronemap-a cloud-based
architecture for the internet-of-drones’. Proc. of the 2016 Int. Conf. on
Embedded Wireless Systems and Networks, TU Graz, Austria, 2016

[13] Im.Cho, Y., Giyenko, A.: ‘Intelligent UAV in smart cities using IoT’. Proc. of
2016 16th Int. Conf. on Control,Automation and Systems (ICCAS),
Gyeongju, Korea, 2016, pp. 207–210

[14] Yoo, S.J., Park, J.h., Kim, S.h., et al.: ‘Flying path optimization in UAV-
assisted IoT sensor networks’, ICT Express, 2016, 2, (3), pp. 140–144

[15] Hu, Y.C., Patel, M., Sabella, D., et al.: ‘Mobile edge computing - a key
technology towards 5G’, ETSI White Paper, 2015, 11, (11), pp. 1–16

[16] Loke, S.W.: ‘The internet of flying-things: Opportunities and challenges with
airborne fog computing and mobile cloud in the clouds’, 2015, arXiv preprint
arXiv:150704492

[17] Jeong, S., Simeone, O., Kang, J.: ‘Mobile edge computing via a UAV-
mounted cloudlet: optimization of bit allocation and path planning’, IEEE
Trans. Veh. Technol., 2018, 67, (3), pp. 2049–2063

[18] Jeong, S., Simeone, O., Kang, J.: ‘Mobile cloud computing with a UAV-
mounted cloudlet: optimal bit allocation for communication and
computation’, IET Commun., 2017, 11, (7), pp. 969–974

[19] Hua, M., Wang, Y., Li, C., et al.: ‘UAV-aided mobile edge computing systems
with one by one access scheme’, IEEE Trans. Green Commun. Netw., 2019, 3,
(3), pp. 664–678

[20] Xiong, J., Guo, H., Liu, J.: ‘Task offloading in UAV-aided edge computing:
bit allocation and trajectory optimization’, IEEE Commun. Lett., 2019, 23,
(3), pp. 538–541

[21] Zhang, J., Zhou, L., Tang, Q., et al.: ‘Stochastic computation offloading and
trajectory scheduling for UAV-assisted mobile edge computing’, IEEE
Internet Things J., 2019, 6, (2), pp. 3688–3699

[22] Zhou, F., Wu, Y., Sun, H., et al.: ‘UAV-enabled mobile edge computing:
offloading optimization and trajectory design’. Proc. of the 2018 IEEE Int.
Conf. on Communications (ICC), Kansas City, MO, USA, May 2018, pp. 1–6

[23] Zhou, F., Wu, Y., Hu, R.Q., et al.: ‘Computation rate maximization in UAV-
enabled wireless-powered mobile-edge computing systems’, IEEE J. Sel.
Areas Commun., 2018, 36, (9), pp. 1927–1941

[24] ‘Airborne Computing Networks (Project Website)’. Available at https://
www.uta.edu/utari/research/robotics/airborne/, accessed 12 September 2019

[25] Dall, C., Nieh, J.: ‘Kvm/arm: the design and implementation of the linux arm
hypervisor’, ACM SIGARCH Comput. Archit. News, 2014, 42, (1), pp. 333–
348

[26] Merkel, D.: ‘Docker: lightweight linux containers for consistent development
and deployment’, Linux J., 2014, 2014, (239), p. 2

[27] ‘Raspberry Pi’. Available at https://www.raspberrypi.org/, accessed 12
September 2019

[28] ‘Odroid Xu’. Available at https://www.hardkernel.com/ko/tag/odroid-xu/,
accessed 12 September 2019

[29] ‘Arduino’. Available at https://www.arduino.cc/, accessed 12 September 2019
[30] ‘Cubieboard’. Available at http://docs.cubieboard.org/products/start, accessed

12 September 2019

Table 4 Execution time of uncoded and coded matrix
multiplication with n = 2

No straggler exists Straggler exists
uncoded computation, s 13.09 24.58

coded computation, s 13.69 13.91

2418 IET Commun., 2020, Vol. 14 Iss. 15, pp. 2410-2419
© The Institution of Engineering and Technology 2019

Authorized licensed use limited to: San Diego State University. Downloaded on November 21,2020 at 23:44:48 UTC from IEEE Xplore. Restrictions apply.

[31] ‘Arndale Board’. Available at http://www.arndaleboard.com/us/?
menuType=product&mode=list&lcate=001&mcate=001, accessed 12
September 2019

[32] Shang, Z., Shen, Z.: ‘Real-time 3D reconstruction on construction site using
visual slam and UAV’, arXiv preprint arXiv:171207122, 2017

[33] ‘Jetson TX1 Module’. Available at https://www.nvidia.com/en-us/
autonomous-machines/embedded-systems-dev-kits-modules/, accessed 12
September 2019

[34] ‘Jetson TX2 Module’. Available at https://elinux.org/Jetson_TX2, accessed 12
September 2019

[35] ‘UDOO X86’. Available at https://www.udoo.org/udoo-x86/, accessed 12
September 2019

[36] ‘Intel Aero Compute Board’. Available at https://software.intel.com/en-us/
aero/compute-board, accessed 12 September 2019

[37] ‘LattePanda Alpha’. Available at https://www.kickstarter.com/projects/
139108638/lattepanda-alpha-soul-of-a-macbook-in-a-pocket-siz, accessed 12
September 2019

[38] ‘UP Squared’. Available at https://up-board.org/upsquared/specifications/,
accessed 12 September 2019

[39] ‘Jetson Xavier’. Available at https://developer.nvidia.com/embedded/buy/
jetson-xavier-devkit, accessed 12 September 2019

[40] ‘DJI Manifold’. Available at https://www.dji.com/manifold, accessed 12
September 2019

[41] ‘HiKey960’. Available at https://www.96boards.org/product/hikey960/,
accessed 12 September 2019

[42] ‘Rock 960’. Available at https://www.96rocks.com/, accessed 12 September
2019

[43] ‘Support Resources’. Available at https://developer.nvidia.com/embedded/
community/support-resources, accessed 12 September, 2019

[44] Li, S., He, C., Liu, M., et al.: ‘The design and implementation of aerial
communication using directional antennas: learning control in unknown
communication environment’, IET Control Theory Applic., 2019, 13, (17), pp.
2906–2916

[45] Lu, K., Xie, J., Wan, Y., et al.: ‘Toward UAV-based airborne computing’,
IEEE Wirel. Commun., 2019, 26, (6), pp. 172–179

[46] ‘DJI Matrice 100’. Available at https://www.dji.com/matrice100, accessed 12
September 2019

[47] ‘NanoStation Loco M5’. Available at https://store.ui.com/collections/wireless/
products/nanolocom5, accessed 12 September 2019

[48] ‘WS323 300Mbps Wireless Range Extender User Guide’. Available at https://
www.manualslib.com/manual/547195/Huawei-Ws323.html#manual, accessed
12 September 2019

[49] Kivity, A., Kamay, Y., Laor, D., et al.: ‘kvm: the linux virtual machine
monitor’. Proc. of the Linux symp., Ottawa, Ontario, July 2007, vol. 1

[50] Yoon, M.K., Liu, B., Hovakimyan, N., et al.: ‘Virtualdrone: virtual sensing,
actuation, and communication for attack-resilient unmanned aerial systems’.
Proc. of the 8th Int. Conf. on Cyber-Physical Systems, Pittsburgh, PA, April
2017, pp. 143–154

[51] Jain, N., Choudhary, S.: ‘Overview of virtualization in cloud computing’.
2016 Symp. on Colossal Data Analysis and Networking (CDAN), Indore,
India, March 2016, pp. 1–4

[52] Seo, K.T., Hwang, H.S., Moon, I.Y., et al.: ‘Performance comparison analysis
of linux container and virtual machine for building cloud’, Adv. Sci. Technol.
Lett., 2014, 66, (2), pp. 105–111

[53] Malhotra, L., Agarwal, D., Jaiswal, A.: ‘Virtualization in cloud computing’, J.
Inf. Technol. Softw. Eng., 2014, 4, (136), p. 2

[54] Shuja, J., Gani, A., Bilal, K., et al.: ‘A survey of mobile device virtualization:
taxonomy and state of the art’, ACM Comput. Surv. (CSUR), 2016, 49, (1), pp.
1–36

[55] Morabito, R.: ‘A performance evaluation of container technologies on internet
of things devices’. Proc. of the 2016 IEEE Conf. on Computer
Communications Workshops (INFOCOM WKSHPS), San Francisco, CA,
April 2016, pp. 999–1000

[56] Patel, A., Daftedar, M., Shalan, M., et al.: ‘Embedded hypervisor xvisor: a
comparative analysis’. Proc. of the 2015 23rd Euromicro Int. Conf. on
Parallel,Distributed and Network-Based Processing (PDP), Turku, Finland,
March 2015, pp. 682–691

[57] Gu, F., Hu, F., Chen, H.: ‘Real-time performance evaluation of linux arm
virtualization’. Proc. of the 2nd Int. Conf. on Energy Science and Applied
Technology (ESAT 2015), Wuhan, China, August 2015

[58] Toumassian, S., Werner, R., Sikora, A.: ‘Performance measurements for
hypervisors on embedded arm processors’. Proc. of 2016 Int. Conf. on
Advances in Computing, Communications and Informatics (ICACCI), Jaipur,
India, September 2016, pp. 851–858

[59] Raho, M., Spyridakis, A., Paolino, M., et al.: ‘KVM, Xen and docker: a
performance analysis for arm based nfv and cloud computing’. Proc. of the
2015 IEEE 3rd Workshop on Advances in Information, Electronic and
Electrical Engineering (AIEEE), Riga, Latvia, November 2015, pp. 1–8

[60] Morabito, R., Beijar, N.: ‘Enabling data processing at the network edge
through lightweight virtualization technologies’. Proc. of 2016 IEEE Int.
Conf. on Sensing, Communication and Networking (SECON Workshops),
London, UK, June 2016, pp. 1–6

[61] Morabito, R.: ‘Virtualization on internet of things edge devices with container
technologies: a performance evaluation’, IEEE Access, 2017, 5, pp. 8835–
8850

[62] Bellavista, P., Zanni, A.: ‘Feasibility of fog computing deployment based on
docker containerization over raspberrypi’. Proc. of the 18th Int. Conf. on
Distributed Computing and Networking, NY, USA, January 2017, p. 16

[63] Baccarelli, E., Naranjo, P.G.V., Scarpiniti, M., et al.: ‘Fog of everything:
energy-efficient networked computing architectures, research challenges, and
a case study’, IEEE Access, 2017, 5, pp. 9882–9910

[64] ‘Edge Computing for UAVs, UASs, and Drones’. Available at https://
www.nutanix.com/go/edge-computing-for-drones.html, accessed 12
September 2019

[65] Kalatzis, N., Avgeris, M., Dechouniotis, D., et al.: ‘Edge computing in IoT
ecosystems for UAV-enabled early fire detection’. Proc. of 2018 IEEE Int.
Conf. on Smart Computing (SMARTCOMP), Kuala Lumpur, Malaysia, July
2018, pp. 106–114

[66] Wang, B., Xie, J., Li, S., et al.: ‘Enabling high-performance onboard
computing with virtualization for unmanned aerial systems’. Proc. of 2018
Int. Conf. on Unmanned Aircraft Systems (ICUAS), Dallas, TX, June 2018,
pp. 202–211

[67] Che, S., Boyer, M., Meng, J., et al.: ‘Rodinia: a benchmark suite for
heterogeneous computing’. Proc. of IEEE Int. Symp. on Workload
Characterization, Austin, TX, October 2009, pp. 44–54

[68] Montella, R., Giunta, G., Laccetti, G., et al.: ‘Virtualizing CUDA enabled
GPGPUs on arm clusters’. Proc. of the 12th Int. Conf. on Parallel Processing
and Applied Mathematics, Krakow, Poland, 2016, pp. 3–14

[69] Kang, D., Jun, T.J., Kim, D., et al.: ‘Convgpu: GPU management middleware
in container based virtualized environment’. Proc. of the 2017 IEEE Int. Conf.
on Cluster Computing (CLUSTER), Hawaii, USA, September 2017, pp. 301–
309

[70] Tirumala, A., Dunigan, T., Cottrell, L.: ‘Measuring end-to-end bandwidth
with IPERF using web100’. Proc. of Passive and Active Monitoring
Workshop, San Diego, CA, April 2003

[71] Wei, Z., Xiaolin, G., Wei, H.R., et al.: ‘TCP DDoS attack detection on the
host in the kvm virtual machine environment’. Proc. of the 2012 IEEE/ACIS
11th Int. Conf. on Computer and Information Science (ICIS), Shanghai,
China, May 2012, pp. 62–67

[72] Mabry, R., Ardonne, J., Weaver, J.N., et al.: ‘Maritime autonomy in a box:
building a quickly-deployable autonomy solution using the docker container
environment’. Proc. of OCEANS 2016 MTS/IEEE Monterey, Monterey, CA,
September 2016, pp. 1–6

[73] Xavier, M.G., Neves, M.V., Rossi, F.D., et al.: ‘Performance evaluation of
container-based virtualization for high performance computing
environments’. Proc. of the 2013 21st Euromicro Int. Conf. on Parallel,
Distributed and Network-Based Processing (PDP), Belfast, UK, February
2013, pp. 233–240

[74] Matthews, J.N., Hu, W., Hapuarachchi, M., et al.: ‘Quantifying the
performance isolation properties of virtualization systems’. Proc. of the 2007
Workshop on Experimental Computer Science, San Diego, CA, June 2007, p.
6

[75] Bailey, D.H.: ‘Nas parallel benchmarks’ (Springer, Boston, MA, US, 2011),
pp. 1254–1259

[76] ‘Jetson TX2 Thermal Design Guide’. Available at https://devtalk.nvidia.com/
default/topic/1036126/measure-jetson-x2-ener gy-usage-during-a-given-task/,
accessed 12 September 2019

[77] ‘Sysstat’. Available at http://sebastien.godard.pagesperso-orange.fr/, accessed
12 September 2019

[78] Yu, C., Huan, F.: ‘Live migration of docker containers through logging and
replay’. Proc. of the Int. Conf. on Mechatronics and Industrial Informatics
Advances in Computer Science Research, Zhuhai, China, October 2015

[79] ‘Checkpoint and Restore’. Available at https://criu.org/Main_Page, accessed
12 September 2019

[80] ‘Docker’. Available at https://www.docker.com/, accessed 12 September 2019
[81] ‘OpenDroneMap’. Available at http://opendronemap.org/, accessed 12

September 2019
[82] ‘Jetson inference’. Available at https://github.com/dusty-nv/jetson-inference,

accessed 12 September 2019
[83] ‘UCF Aerial Action Data Set’. Available at http://crcv.ucf.edu/data/

UCF_Aerial_Action.php, accessed 12 September 2019
[84] Lee, K., Lam, M., Pedarsani, R., et al.: ‘Speeding up distributed machine

learning using codes’, IEEE Trans. Inf. Theory, 2018, 64, (3), pp. 1514–1529
[85] Zheng, J., Cai, Y., Wu, Y., et al.: ‘Dynamic computation offloading for mobile

cloud computing: a stochastic game-theoretic approach’, IEEE Trans. Mob.
Comput., 2018, 18, (4), pp. 771–786

IET Commun., 2020, Vol. 14 Iss. 15, pp. 2410-2419
© The Institution of Engineering and Technology 2019

2419

Authorized licensed use limited to: San Diego State University. Downloaded on November 21,2020 at 23:44:48 UTC from IEEE Xplore. Restrictions apply.

