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In the near future, large amount of unmanned aerial vehicles (UAVs) are expected to
appear in the airspace. To ensure the safety of the airspace, there are many daunting
technical problems to tackle, one of which is how to navigate multiple UAVs safely and
efficiently in the large-scale airspace with both static and dynamic obstacles under wind
disturbances. This paper solves this problem by developing a novel data-driven multi-UAV
navigation framework that combines A∗ algorithm with a state-of-the-art deep reinforce-
ment learning (DRL) method. The A∗ algorithm generates a sequence of waypoints for each
UAV and the DRL ensures that the UAV can reach each waypoint in order while satisfying
all dynamic constraints and safety requirements. Furthermore, our framework significantly
expedites the online planning procedure by offloading most computations to offline and
limiting online computing to only path fine-tuning and dynamic obstacle avoidance. The
simulation studies show the good performance of the proposed framework.

I. Introduction

Unmanned aerial vehicles (UAVs) have been widely used in many civilian and commercial applications
such as infrastructure inspection,1 agriculture spraying,2 fire detection3 and package delivery.4,5 It is pre-
dicted by the Federal Aviation Administration that millions of UAVs will appear in the U.S. airspace by
2040.6 To ensure the safety of the airspace, how to manage large amount of UAV traffic efficiently is a critical
problem to address. Although past experiences on managing the air traffic are valuable resources to learn
from, they cannot be directly applied for UAV traffic management (UTM), considering the numerous differ-
ences between manned civilian aircraft and small UAVs, such as the high variety and uncertainty in UAV
trajectories, heterogeneity of UAV types, and sensitivity of UAV dynamics to environmental disturbances.
To address these challenges, the National Aeronautics and Space Administration (NASA) has devoted great
efforts on developing a research platform for the UTM system to determine how UAVs can access the low-
altitude airspace safely, efficiently and fairly.7,8 Despite the significant progress that has been made,9,10

there are still many unsolved research challenges. In this paper, we aim to address one of the research
challenges, that is how to navigate multiple UAVs in a complicated large-scale environment with both static
and dynamic obstacles under wind disturbances. The difficulty of this problem lies in the complexity and
large scale of the environment, which makes real-time decision-making hard to achieve.

UAV navigation plays an important role in many UAV applications, which aims at driving the UAV to
reach a target while avoiding obstacles and minimizing certain costs such as flight time, travel distance and
control efforts. To achieve UAV navigation, many existing approaches adopt a two-step procedure.11–14 In
particular, the first step applies a path planning algorithm to find a feasible path. Typical path planning
algorithms include: 1) search-based algorithms such as the Dijkstra algorithm,15 A* algorithm16 and D*
algorithm,17 2) sampling-based algorithms like the Rapidly-exploring Random Trees (RRT),18,19 Probabilistic
Roadmaps (PRM)20 and Expansive Space Trees (EST),21 which are usually more time-efficient but generate
less optimal paths than the search-based algorithms, and 3) numerical optimization methods such as integer
linear programming,22 particle swarm optimization23 and ant colony optimization.24 The second step applies
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a trajectory generation algorithm such as Bezier curves12 and spline interpolation25 to make the path flyable
by smoothing the path and imposing UAV dynamic and kinematic constraints.

To simplify the process, some studies explored optimal control techniques,26,27 which generate a sequence
of control signals that drive the UAV to navigate in the environment. However, these approaches require
prior knowledge of system dynamics and the environment. In scenarios where the system dynamic or
the environment is unknown, reinforcement learning28 can be used to learn the optimal actions to take
during navigation. However, solving the optimal control problem or training a reinforcement learning control
strategy is time-consuming, which is not suitable for complicated environments that are large in scale and/or
change over time.29 Moreover, in a large-scale environment, the reward is sparse making the training of
reinforcement learning suffer from local optimality easily.29 To address this challenge, authors in29 develop a
hierarchical method that combines PRM for path planning with reinforcement learning for motion planning.
In particular, the PRM is first used to generate a sequence of waypoints, and the reinforcement learning
is then applied to ensure these waypoints can be followed while satisfying the dynamic constraints and
collision-free requirements. This method, nevertheless, does not consider dynamic obstacles or the impact
of wind disturbances, and is designed for a single robot.

In this paper, we introduce a data-driven multi-UAV navigation framework to enable safe and efficient
UAV operations in a large-scale dynamic environment under wind disturbances. To enable long-range UAV
navigation, we combine the A∗ algorithm30 with deep reinforcement learning (DRL),28 where the A∗ al-
gorithm provides roadmaps that will enable the UAVs to reach their target positions and the DRL learns
point-to-point navigation policies to ensure the UAVs can navigate safely from one point to another without
colliding with any dynamic obstacles. Furthermore, to enable real-time decision-making in a large-scale
environment, we move most of the computations to offline through leveraging historical solutions for similar
scenarios and limit online computing to only path fine-tuning and dynamic obstacle avoidance. This frame-
work is promising in that it significantly relieves the burden for online computing by offloading the path
planning overhead to offline while taking the wind disturbances into consideration. It also leverages DRL
to achieve collision avoidance with dynamic obstacles. The performance of this framework is demonstrated
through comprehensive simulation studies. Of note, a similar idea was presented in paper,31 but it does not
consider dynamic obstacles and adopts an optimal control based technique, which can be computationally
expensive for large-scale scenarios.

In the rest of the paper, we first describe system models and formulate the problem to be solved in Section
II. Section III then describes the proposed data-driven multi-UAV navigation framework. Simulation results
are presented in Section IV. Finally, Section V concludes the paper.

II. Preliminaries

In this section, we first describe system models including the wind influence model and the UAV dynamic
model. We then provide the mathematical formulation for the multi-UAV navigation problem to be solved
in this study.

II.A. Wind Influence Model

As wind disturbances have a great impact on UAV dynamics, ignoring their impacts can cause safety
issues. To model wind dynamics, we adopt the wind influence model presented in,32 which captures
the spatiotemporal wind spread dynamics. In particular, consider a 2-dimensional (2-D) space, denoted
by W ∈ R2. The wind field in the environment space W is discretized into L regions represented by
W = {W1,W2, . . . ,WL}. The wind in each region l at time step t is described by the wind speed wl[t],
which takes a discrete value from the range [wmin, wmax] with resolution ∆w. Therefore, the possible wind
statuses are {wmin, wmin + ∆w, . . . , wmin + (K − 1)∆w}, where K = dwmax−wmin

∆w
e is the total number of

wind statuses. To describe the wind state of each region l at time t, a one-hot state vector sl[t] ∈ RK×1 is
used in the influence model, whose i-th element is 1 if at the i-th wind status, where i ∈ [K] := {1, 2, . . . ,K}.
The whole wind field’s state at time step t can then be described by S[t] = [sT1 [t], sT2 [t], . . . , sTL[t]]T .

The evolution of each region’s wind state is affected by the region’s previous state and its neighbors
through two parameters. First, a local transition matrix Al,l̃ ∈ RK×K is used to describe the impact

of region l’s previous state on the current state of region l̃. In particular, each (i, j)-th entry of Al,l̃ is

the probability of transiting to state j in region l̃ given the previous state i in region l. Second, a scalar
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cl,l̃ ∈ [0, 1] is used to capture how frequently region l affects region l̃. Given the state of each region at the
previous time step t− 1, the probability mass function of each region’s state at the current time step t can
then be determined by

L∑
l̃=1

cl,l̃sl̃[t− 1]Al,l̃, (1)

which in turn is used to generate the wind state sl[t] of each region l. In this study, we assume that wind
dynamics are time-invariant over the planning horizon. Therefore, each snapshot of the wind field S[t] is
considered as one wind scenario. Without loss of information, we use S to denote a wind scenario in the
following sections,

II.B. UAV Dynamic Model

We apply a point-mass model to describe the dynamics of a UAV.26 Here we assume all UAVs fly at the same
altitude. The state of a UAV p[t] = [x[t], y[t]]T ∈ W at time t captures the position of the UAV. The control
input u[t] is specified by u[t] = [v[t], θ[t]] ∈ U , where v[t] ∈ [0, vmax] and θ[t] are the speed and heading angle
at time t, respectively, vmax is the maximum speed, and U is the control input space. The dynamics of the
UAV in a windless environment are then described by:

ṗ[t] = f(p[t],u[t]) =

[
v[t] cos(θ[t])

v[t] sin(θ[t])

]
(2)

When winds are present but mild, existing UAVs are usually capable of stabilizing themselves, by applying
disturbance rejection control strategies, like the ones described in.33,34 However, when winds are strong,
UAVs of small size can be displaced or flipped,35 despite how robust their control systems to disturbances
are. To capture UAV dynamics in a windy environment, we hence adopt the simple impact model described
in.36 Specifically, we assume the UAV is able to stabilize itself when the wind speed is below a certain
threshold ζ > 0, in which case its dynamics are captured by (2). On the other hand, when the wind speed
exceeds ζ, we assume the UAV is unable to maintain normal operations and will crash.

II.C. Problem Formulation

In this study, we consider the scenario where N number of UAVs aim to navigate safely in a large-scale
environment with both static and dynamic obstacles (e.g., buildings, trees, birds, other aircraft) and under
wind disturbances. Each UAV i, i ∈ [N ], aims to reach a given target position pi,g from a starting position
pi,a, while avoiding static and dynamic obstacles as well as areas with strong winds.

To describe this problem mathematically, we introduce Cfree to capture the free space in which the UAVs
can operate safely at the presence of static obstacles and wind disturbances. Particularly, Cfree is given by
the following equation

Cfree = {p|p ∈ Wl,p 6∈ Cobs, wl ≤ ζ, l ∈ [L]},

where Cobs represents the static obstacle space. Furthermore, suppose there are M dynamic obstacles and
the position of each dynamic obstacle j ∈ [M ] at time t is denoted by oj [t]. Assuming that pi,g,pi,a ∈ Cfree,
∀i ∈ [N ], the multi-UAV navigation problem to be solved can then be described by following equations

minimize
ui[0:Ti],∀i∈[N ]

J =

N∑
i=1

Ti

subject to ṗi[t] = f(pi[t],ui[t]), ∀i ∈ [N ]

pi[Ti] = pi,g, ∀i ∈ [N ]

pi[0] = pi,a, ∀i ∈ [N ]

||pi[t]− oj [t]|| ≥ ri + ro,j , ∀i ∈ [N ], j ∈ [M ]

||pi[t]− pj [t]|| ≥ ri + rj , ∀i ∈ [N ], j ∈ [N ], j 6= i

pi[t] ∈ Cfree, ∀i ∈ [N ]

ui[t] ∈ U , ∀i ∈ [N ]
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where Ti is the flight time of UAV i and
∑N
i=1 Ti is the total flight time we aim to minimize. To ensure

safe operations, the UAVs should keep a safe distance from each other, as well as from any obstacles. By
regarding each UAV as a sphere with radius of ri, the safe distance between two UAVs, i and j, is thus
ri + rj . Similarly, the safe distance between each UAV i and a dynamic obstacle j is ri + ro,j , where ro,j is
the radius of the dynamic obstacle.

III. Data-Driven Multi-UAV Navigation Framework

In this section, we introduce a data-driven multi-UAV navigation framework to solve the problem formu-
lated in the previous section efficiently.

Figure 1: Overview of the proposed data-driven multi-UAV navigation framework.

Our framework (see Figure 1) consists of three phases: 1) the offline historical database construction
phase, 2) the online path query and tuning phase and 3) the online path following phase. In the offline
historical database construction phase, a historical database is constructed offline, which stores the historical
wind scenarios tagged with corresponding paths generated by the A∗ algorithm. The online path query and
tuning phase is triggered when a new mission is received and performed before UAV departure. In this phase,
the UAVs query the historical database using the current wind scenario to retrieve the most similar historical
wind scenario and associated paths. The retrieved paths are then fine tuned to address the uniqueness of the
current wind scenario. With the corrected paths, the UAVs then depart and enter the online path following
phase. In this phase, the UAVs follow these paths and make proper adjustments to avoid dynamic obstacles,
by applying the control policy learned by a deep reinforcement learning (DRL) based algorithm.28 In the
rest of this section, let’s describe each phase in more detail.

Table 1: Structure of the Historical Database

Index Wind
scenario

Starting
positions

Target
positions

Paths

1 S1 P
(1)
a P

(1)
g P(1)

2 S2 P
(2)
a P

(2)
g P(2)

... ... ... ... ...

I SI P
(I)
a P

(I)
g P(I)

III.A. Offline Historical Database Construction

The historical database stores offline wind scenarios and associated paths for the UAVs generated by the

A∗ algorithm. Table 1 illustrates the data stored in the database, where P
(j)
a = {p(j)

1,a,p
(j)
2,a, . . . ,p

(j)
N,a} and

P
(j)
g = {p(j)

1,g,p
(j)
2,g, . . . ,p

(j)
N,g} are the starting and target positions of the N UAVs in the j-th scenario,
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P(j) = {P(j)
1 ,P(j)

2 , . . . ,P(j)
N } are the associated paths generated by the A∗ algorithm, and I is the total

number of wind scenarios in the database.

Algorithm 1: A* algorithm

Input: Pa,Pg, S, Cobs, ζ, β
Output: P

1 P ← ∅
2 Construct Cfree ← {p|p ∈ Wl,p 6∈ Cobs, wl ≤ ζ, l ∈ [L]}
3 foreach i ∈ [N ] do
4 Construct G(V,E), with V = {p1,p2, . . . ,pm}, p1 = pi,a, and pm = pi,g
5 O ←{p1}; C ← {}
6 g1 ← 0; gk ←∞,∀k ∈ V \{p1}
7 while pm 6∈ C do
8 O ← O \ {pk}, where pk = arg minpk∈O fk and fk = gk + ε||pk − pm||
9 C ← C ∪ {pk}

10 for j ∈ {j|pj is connected with pk}, j 6∈ C, j ∈ Cfree do
11 if gj > gk + ||pk − pj || then
12 gj ← gk + ||pk − pj ||
13 B(pj)← pk
14 if pj ∈ O then
15 fj ← gj + ε||pj − pm||
16 else
17 O ← O ∪{pj}

18 Pi ← {pm}
19 p̂← pm
20 while p1 6∈ Pi do
21 Pi ← Pi ∪ B(p̂)
22 p̂← B(p̂)

23 P ← {P,Pi}
24 Return P

As the first step to enable long-range multi-UAV navigation, the A∗ algorithm is used to generate the
path for each UAV, given a wind scenario and map of the operating environment. The derived path avoids
static obstacles and areas with strong winds and is composed of a sequence of waypoints. Note that collision
avoidance with dynamic obstacles is tackled in the online path following phase. Algorithm 1 summarizes the
procedures to generate the paths P using the A∗ algorithm, given a wind scenario S, starting positions Pa

and target positions Pg of the UAVs.
To generate the paths P, the first step is to construct the free space Cfree based on the wind scenario S

and the map of the operating environment, i.e., Cobs (Line 2). For each UAV i, we then construct a graph
G(V,E) (Line 4) by decomposing the operating environment W into a collection of grids, with the size of
each grid to be β × β, β > 0. In this graph, the set of vertices V are formed by the centroids of the grids,
and the edges E are formed by connecting adjacent grids, where grids that share a common edge/vertex are
considered as adjacent to each other. Moreover, in case when the starting position pi,a (or target position
pi,g) is not the centroid of any grid, we expand the graph to include this position, by appending V with
pi,a (or pi,g) and adding the edge that connects pi,a (or pi,g) with the centroid of the grid containing
pi,a (or pi,g) into E. For convenience of reference, we let pk denote the k-th vertex in V , and pi,a = p1,
pi,g = pm, where m = |V | is the total number of vertices. With G, the A∗ algorithm is then performed to
find the paths P (Line 3-23). In particular, Line 5 introduces a set O to store the vertices to visit and a
set C to store the vertices that have been visited. gk is then introduced in Line 6 to denote the estimated
minimum cost from the starting position p1 (i.e., pi,a) to each vertex pk ∈ V , which is initialized to ∞,
∀pk ∈ V \{p1}. After that, an iterative procedure is performed to optimize gk until the target position pm
(i.e., pi,g) has been visited. In each iteration, the next vertex to visit is determined by a priority score defined
as fk = gk + ε||pk − pm||, where ε is a weight factor that balances between the efficiency and optimality.

5 of 13

American Institute of Aeronautics and Astronautics



In Line 13, B(pk) is used to store the vertex right before pk in the estimated shortest path from p1 to pk.
Finally, the path Pi for UAV i is constructed based on B(pk) (Line 18 to Line 23).

III.B. Online Path Query and Tuning

With the current wind scenario generated by forecasting tools, the online path query and tuning phase
quickly generates feasible paths for the UAVs to reach their target positions. This is achieved in two steps.
The first step queries the historical database to retrieve the most similar wind scenario and associated paths.
The second step fine tunes the retrieved paths to address any safety concerns incurred due to the differences
between the current and retrieved wind scenarios.

To find the historical scenario most similar to the current wind scenario, we apply the similarity search
algorithm developed in our previous studies.37,38 This algorithm utilizes a multiresolution distance measure39

to quantify the similarity between different spatiotemporal wind scenarios. As wind dynamics are assumed
to be time-invariant over the planning horizon in this study, wind scenarios are compared only along the
spatial dimension. In particular, to calculate the similarity between two scenarios Si and Sj , we adopt a
spatial moving window of increasing size to scan two scenarios simultaneously and calculate their distance
after each scan by using the following equation:

Di,j,z =
∑
φl,z∈Φz

1
|φl,z|

[∑
l̃∈φl,z

(
w

(i)

l̃

λl̃,z
− w

(j)

l̃

λl̃,z

)]
(3)

In the above equation, φz,l denotes the spatial window of size z centered at region l, which includes all
regions that are within z hops away from l. Φz = {φz,l|l ∈ [L]} denotes the set of all possible windows of size
z. λl̃,z =

∑
φl,z∈{φl,z|l̃∈φl,z}

1
|φl,z| is the spatial contribution factor to address the unbalanced contributions of

boundary regions. w
(j)

l̃
is the wind speed in region l̃ of wind scenario j. The overall distance Di,j between

the two scenarios is the weighted average of the distances obtained at each window size. In particular,

Di,j =

zmax∑
z=1

Di,j,z
σz∑zmax

z=1 σz
(4)

where zmax is the maximum window size, σz = e−α(z−1) is a weighting factor that decreases with the increase
of the window size, indicating less contributions of larger window sizes with coarser resolutions. Based on
this distance measure, the similarity search algorithm37,38 adopts an iterative procedure to quickly find the
scenario most similar to the query scenario. The key idea is to use the bounds of the distance measure
tightened at each iteration to progressively prune the search space until the scenario with the smallest
distance is found. For more detailed descriptions, please refer to papers.37,38

Given the current wind scenario Sc, the path retrieved from the historical database can then be described
by

P∗ = P(q)

q = arg min
j∈[I]

Dc,j (5)

As the current wind scenario Sc is not exactly same as scenario Sq in the database that is most similar
to it, the retrieved path P∗ may not satisfy the safety requirements. Therefore, fast online tuning is desired.
We here develop a simple heuristic online tuning algorithm (see Algorithm 2) that performs a safety check
for each waypoint along the retrieved path in order and makes adjustments whenever a waypoint violates the
safety requirements. In particular, for each UAV, we start from the first waypoint in its retrieved path and
check whether this waypoint is in the free space Cfree constructed based on Sc or not. If yes, we move on
to the next waypoint. Otherwise, we run the A∗ algorithm by setting the previous waypoint as the starting
position, and setting the next waypoint in Cfree as the end position. The generated sequence of waypoints is
then used to correct the retrieved path by replacing the corresponding path segment with these waypoints.
This procedure is repeated until the end of the path. With the corrected path, each UAV then departs and
performs online path following described in the next subsection to reach its target position. At the same
time, we also insert the corrected path and the current wind scenario into the historical database to facilitate
future planning.
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Algorithm 2: Online Tuning Algorithm

Input: Retrieved paths P∗ = {P∗1 ,P∗2 , . . . ,P∗N}, current wind scenario Sc
Output: Corrected paths P

1 Cfree ← {p|p ∈ Wl,p 6∈ Cobs, wl ≤ ζ, l ∈ [L]}
2 foreach i ∈ [N ] do
3 k ← 1
4 Pi ← P∗i (k), where P∗i (k) is the k-th waypoint in path P∗i .
5 while k ≤ ni := |P∗i | do
6 if P∗i (k) 6∈ Cfree then
7 j ← k + 1
8 while j ≤ ni and j /∈ Cfree do
9 j ← j + 1

10 Run A∗ algorithm with P∗i (k − 1) as the starting position and P∗i (j) as the end position
to generate path Ps

11 Ps ← Ps \ {P∗i (k − 1),P∗i (j)}
12 Pi ← [Pi,Ps]
13 k ← j

14 else
15 Pi ← [Pi,P∗i (k)]
16 k ← k + 1

17 if P∗i (ni) ∈ Pi then
18 P ← {P,Pi}
19 else
20 Return NaN, as no feasible is found.

21 Return P

III.C. Online Path Following

In the online path following phase, the UAVs depart from their starting positions and navigate towards
their target positions by following the paths P = {P1,P2, . . . ,PN} generated from the previous phase. To
avoid dynamic obstacles, a state-of-the-art DRL-based motion planning approach, called GA3C-CADRL
(GPU/CPU Asynchronous Advantage Actor-Critic for Collision Avoidance with Deep Reinforcement Learn-
ing),28 is adopted to learn point-to-point navigation policies. A brief description of GA3C-CADRL is pro-
vided as follows.

Define p̃i[t] = [p̃oi [t], p̃
h
i [t]] as the new state vector for UAV i, where p̃oi [t] = [pi[t], ṗi[t], ri] is the observable

state including the position, velocity, and radius of the UAV i, p̃hi [t] = [pi,k, vmax, θ[t]] is the hidden state
with pi,k being the k-th waypoint in the path Pk, k ∈ [ni]. Moreover, let p̃o−i [t] denote the observable state
vectors of all UAVs except i, and õj [t] = [oj [t], ȯj [t], ro,j ] denote the state vector of obstacle j. Of note, in
this path following phase, we also consider static obstacles and strong wind areas as dynamic obstacles but
with zero velocities.

Based on above definitions, the GA3C-CADRL learns a stochastic policy π(ui[t] | p̃i[t], p̃o−i [t], õj [t],∀j ∈
[M ]) that outputs the probability density function of the control inputs ui[t], given the states of all UAVs,
p̃i[t] and p̃o−i [t], as well as the states of the obstacles õj [t],∀j ∈ [M ]. As the number of obstacles may
differ in different scenarios, to make the DRL system general to an arbitrary number of obstacles, the policy
π(ui[t]|p̃i[t], p̃−oi [t], õj [t],∀j ∈ [M ]) is represented by a neural network that consists of a Long Short Term
Memory (LSTM) cell and two fully connected layers, as illustrated in Figure 2. The usage of LSTM allows
the policy to accept an arbitrary number of obstacles’ states as the inputs.

To learn the policy, multiple UAVs are operated to interact with the environment through simulations
or real experiments, where the UAVs learn a common policy. The reward (or cost) signals received from the
environment are used to optimize the policy by minimizing the expected flight time Ti,k from one waypoint
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Figure 2: Neural network architecture of policy function.

pi,k to the next pi,k+1, k ∈ [ni − 1]. The mathematical formulation is given as follows

argmin
π(ui[t]|p̃i[t],p̃o

i [t],õj [t],∀j∈[M ])

E [Ti,k|p̃i[tk], p̃oi [tk], õj [tk],∀j ∈ [M ], π]

subject to ṗi[t] = f(pi[t],ui[t])

pi[Ti,k] = pi,k+1

pi[tk] = pi,k

‖pi[t]− pj [t]‖ ≥ ri + rj ,∀j ∈ [N ]\{i}
‖pi[t]− oj [t]‖ ≥ ri + ro,j ,∀j ∈ [M ]

pi[t] ∈ Cfree
ui[t] ∈ U

(6)

For more details, please refer to the paper.28

IV. Simulation Studies

In this section, we evaluate the performance of the proposed data-driven multi-UAV navigation frame-
work through simulation studies. In particular, we first illustrate the procedures to construct the historical
database. We then show the effectiveness of the path query and tuning phase in accelerating the online path
planning procedure, as well as the effectiveness of the path following phase in enabling safe multi-UAV nav-
igation at the presence of dynamic obstacles. Finally, we demonstrate that combining A∗ for path planning
with DRL for motion planning enables long-range navigation in a dynamic environment, which cannot be
achieved by either A∗ or DRL alone. In the following simulation studies, all experiments were run on an
Alienware Desktop with 32GB memory and 16-core 3.6GHz CPU.

IV.A. Offline Historical Database Construction

To construct the historical database, we consider N = 3 UAVs navigating in a wind field of size [0, 1000m]×
[0, 1000m]. The starting positions of the three UAVs are set to [0, 0], [860m, 5m], [0, 900m], respectively, and
their target positions are set to [980m, 940m], [10m, 950m], [850m, 830m], respectively. The wind field is
equally divided into L = 100 regions, with the size of each region to be 100m× 100m. I = 100 spatial wind
scenarios are then generated using the wind influence model, with each snapshot of the wind field generated
at each time step considered as one scenario. Specifically, the range of the wind speed is set to [0m/s, 10m/s)
with resolution of ∆w = 1m/s. Therefore, the total number of wind statuses is K = 10. The initial wind
speed in each region l is determined by first applying the following equation,40√[

2 sin
( xl

100

)
+ 4 cos

( yl
100

)
+ δ
]2

+
[
2 cos

( xl
100

)
+ 4 sin

( yl
100

)
+ δ
]2

(7)

and then rounding the value to the nearest wind status value. Here, δ is a standard normal random variable,
i.e., δ ∼ N (0, 1), and [xl, yl]

T is the center position of region l.
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For each wind scenario, we then run the A∗ algorithm (Algorithm 1) offline to generate near-optimal
paths for the three UAVs, with the threshold of wind speed for safe operation set as ζ = 7m/s. An example
wind scenario and the corresponding paths of the three UAVs are shown in Figure 3. Of note, the average
computation time of the A∗ algorithm to generate paths for the three UAVs is 183s, which does not meet
the real-time decision requirement.

(a) (b)

Figure 3: An example of a) the wind scenario and b) corresponding paths of the three UAVs.

IV.B. Online Path Query and Tuning

In this subsection, we demonstrate the capability of the online path query and tuning phase in our framework
through three experimental studies. In these and following studies, the parameters of the similarity search
algorithm are set to α = 1 and zmax = 8.

In the first experiment, we generate a new wind scenario that is very similar to the one retrieved from
the historical database, as shown in Figure 4 (a)-(b). In this case, the retrieved paths can be directly applied
without correction. Figure 4(d) and 4(c) show the retrieved paths before and after applying the online
tuning procedure (Algorithm 2). As no corrections are actually made to the retrieved paths, the “corrected”
paths are exactly same as the retrieved paths. The time taken to perform path query and tuning is 4s,
demonstrating the efficiency of our framework.

(a) (b) (c) (d)

Figure 4: Illustration of the a) current wind scenario, b) retrieved wind scenario, c) corrected paths, and d)
retrieved paths in the first experiment.

In the second experiment, we generate a new wind scenario that is quite different from the one retrieved
from the historical database, as shown in Figure 5(a)-(b). In this case, the retrieved paths cannot be directly
used and need to be corrected. Figure 5(c) shows the corrected paths after applying the online tuning
procedure on the retrieved paths shown in Figure 5(d). As we can see, the corrected paths differ from the
retrieved ones and can successfully avoid strong wind areas that do not appear in the retrieved wind scenario.
Compared with the first experiment, it takes 26 more seconds to perform path query and tuning in this case
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due to path corrections. Nevertheless, the overall computation time, which is 30s, is still much shorter than
the time required for directly running the A∗ algorithm, which is 183s.

(a) (b) (c) (d)

Figure 5: Illustration of the a) current wind scenario, b) retrieved wind scenario, c) corrected paths, and d)
retrieved paths in the second experiment.

In the third experiment, we randomly generate 10 new wind scenarios, and run the path query and tuning
procedures for each wind scenario. The average computation time is 34s, which further demonstrates the
effectiveness of the path query and tuning phase in expediting the online path planning procedure.

IV.C. Online Path Following

The online path following phase enables the UAVs to follow the paths generated from the online path
query and tuning phase, while avoiding dynamic obstacles. To demonstrate its performance, we introduce a
dynamic obstacle that moves along the same path as the first UAV but in the opposite direction. Therefore,
collisions will happen if the UAV does not act properly. To implement online path following, we adopt the
same settings as the ones used in paper28,41 to generate DRL policies for the UAVs. The control frequency
is set to 20Hz. The radius of the three UAVs and the dynamic obstacle are all set to 0.6m. During the
movement, both static and dynamic obstacles within the range of 8m can be sensed by the UAVs, and the
sensing information include positions, sizes, and velocities of the obstacles. Figure 6 shows the trajectories of
the three UAVs and the dynamic obstacle. The current wind scenario and the retrieved paths are shown in
Figure 4(a) and Figure 4(d), respectively. As we can see, all three UAVs can successfully reach their target
positions without crashing into any static/dynamic obstacles or entering areas with strong winds.

Figure 6: Trajectories of three UAVs and the dynamic obstacle.

IV.D. Long-Range Multi-UAV Navigation

To further demonstrate the effectiveness of our framework that combines A∗ with DRL, we show in this
subsection that directly applying the DRL is infeasible for long-range multi-UAV navigation. Note that the
A∗ algorithm alone is unable to handle dynamic obstacles.
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Consider the wind scenario shown in Figure 4(a), the trajectories of the three UAVs generated by directly
applying the DRL are shown in Figure 7. As we can see, all UAVs move in a circle and fail to reach their
target positions.

Figure 7: Trajectories of the UAVs operating in a large-scale environment when directly applying the DRL.

For demonstration purpose, we also run a small-scale experiment and show that DRL is indeed feasible for
short-range multi-UAV navigation. In this experiment, we consider the scenario where three UAVs operate in
a small space of size [−5m, 15m]× [−5m, 15m]. The starting positions of the three UAVs are set to [0m, 0m],
[−1m,−1m] and [−1m, 2m], respectively, and their target positions are set to [−1m, 4m], [12m, 10m] and
[8m, 6m], respectively. The trajectories of the three UAVs by applying the DRL are shown in Figure 8. As
we can see, all UAVs can reach their target positions and successfully avoid both static obstacles and other
UAVs.

Figure 8: Trajectories of the UAVs operating in a small-scale environment when directly applying the DRL.

V. Conclusion

In this paper, we developed a data-driven multi-UAV navigation framework that combines A∗ algorithm
with DRL to enable multiple UAVs to navigate safely in a large-scale dynamic environment under wind
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disturbances. To speed up the online planning procedure, this framework offloads most computations to
offline by leveraging a historical database that stores paths planned for historical wind scenarios. Given
a new wind scenario, instead of planning from scratch, our framework retrieves the most similar historical
scenario and associated paths from the database and fine tunes the paths to address the uniqueness of the
current scenario online. Simulation results show that, by using our framework, the UAVs can successfully
and safely navigate to their target positions in a large-scale complicated environment, with the existence of
both static/dynamic obstacles and wind disturbances, which cannot be achieved by either the A∗ or DRL
alone. The results also show that our data-driven framework significantly reduces the computation time for
online path planning.
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approach to nontrivial maneuvers and obstacle avoidance for quadrotor uav under disturbances,” Robotics and Autonomous
Systems, vol. 98, pp. 317–332, 2017.

34C. Zhang, X. Zhou, H. Zhao, A. Dai, and H. Zhou, “Three-dimensional fuzzy control of mini quadrotor uav trajectory
tracking under impact of wind disturbance,” in Proceedings of 2016 International Conference on Advanced Mechatronic Systems
(ICAMechS). Melbourne, Australia: IEEE, November 2016.

35K. Cole and A. M. Wickenheiser, “Trajectory generation for uavs in unknown environments with extreme wind distur-
bances,” arXiv preprint arXiv:1906.09508, 2019.

36——, “Reactive trajectory generation for multiple vehicles in unknown environments with wind disturbances,” IEEE
Transactions on Robotics, vol. 34, no. 5, pp. 1333–1348, 2018.

37J. Xie, A. Reddy Kothapally, Y. Wan, C. He, C. Taylor, C. Wanke, and M. Steiner, “Similarity search of spatiotemporal
scenario data for strategic air traffic management,” Journal of Aerospace Information Systems, pp. 187–202, 2019.

38J. Xie, H. Nguyen, and Y. Wan, “Similarity search of spatiotemporal scenario data for strategic air traffic management,”
in Proceedings of 2018 Aviation Technology, Integration, and Operations Conference. Atlanta, Georgia: AIAA, June 2018.

39J. Xie, Y. Wan, Y. Zhou, S.-L. Tien, E. P. Vargo, C. Taylor, and C. Wanke, “Distance measure to cluster spatiotemporal
scenarios for strategic air traffic management,” Journal of Aerospace Information Systems, vol. 12, no. 8, pp. 545–563, 2015.

40S. Yang, N. Wei, S. Jeon, R. Bencatel, and A. Girard, “Real-time optimal path planning and wind estimation using
gaussian process regression for precision airdrop,” in Proceedings of 2017 American Control Conference (ACC). Seattle,
Washington: IEEE, May 2017.

41M. Everett, “Motion Planning Among Dynamic, Decision-Making Agents with Deep Reinforcement Learning,” 2020.
[Online]. Available: https://github.com/mit-acl/rl collision avoidance

13 of 13

American Institute of Aeronautics and Astronautics

https://github.com/mit-acl/rl_collision_avoidance

	Introduction
	Preliminaries
	Wind Influence Model
	UAV Dynamic Model
	Problem Formulation

	Data-Driven Multi-UAV Navigation Framework
	Offline Historical Database Construction
	Online Path Query and Tuning
	Online Path Following

	Simulation Studies
	Offline Historical Database Construction
	Online Path Query and Tuning
	Online Path Following
	Long-Range Multi-UAV Navigation

	Conclusion

